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The inverse spectral transform is numerically implemented to
analyze arbitrary initial data for the Korteweg-de Vries equation
with periodic boundary conditions and to predict the wave field at
any point in spacetime without integration. Explicit analysis and
prediction algorithms are described for arbitrary values of the gap
number AL Itis found thatthe method with M~ 10 is computationally
inexpensive and provides a useful analysis for a class of problems
likely to occur in experimental situations. As an example the method
is applied to randomized initial data, in a setting where neither
soliton nor linear approximations are accurate. Wave structures
occurrintg with these initial conditions are classified as multi-gap
quasiperiodic modes and are simplified by nonlinear filtering. The
efficiency of the method is briefly compared with that of direct
numerical integration. © 1995 Academic Press, Inc.

1. INFRODUCTION

Fourier analysis solves the initial-condition problem for a
linear partial differential equation (PDE) by finding the ampli-
tudes and phases of a set of harmonic modes. The solution may
be directly evaluated at any spacetime point (x, f) without
integration, as a linear superposition of the modes. In addition
to being an efficient method for projecting arbitrary initial
data forward in time, Fourier analysis provides a powerful
classification of solutions to linear PDEs in terms of their spec-
tral content.

For integrable nonlinear PDEs (Korteweg—de Vries (KdV),
nonlinear Schrédinger, sine-Gordon, etc.) the inverse-scattering
transform (IST) provides an analogous solution [1]. On an
infinite domain these PDEs evolve any localized initial distur-
bance into weak linear waves plus solitons, which the IST
identifies with bound states of an associated eigenvalue prob-
lem. However, the IST in this form only solves a limited class
of problems, those for which the wave field decays rapidly at
large distances.

Dubrovin and Novikov [2] and Its and Matveev [3] general-
ized the IST to the class of *“*N-gap’’ solutions to the KdV
equation, which can accurately approximate any well-behaved
periodic or quasiperiodic function [4]. This broad class includes
all soliton solutions and linear waves as limiting cases, as well
as other solutions which are not accurately describable in terms

of solitons and linear waves. Briefly, an A-gap sclution is one
for which the band structure of a Schridinger equation derived
from the wave data has exactly N gaps, or forbidden energy
ranges. The method of Refs. {2-3], generally termed the inverse
spectral transform {(ISPT) in the literature, has been extended
to a number of other integrable nonlinear equations [2, 5, 6].

The ISPT generalizes the Fourier series to integrable nonlin-
ear systems, in the sense that an analysis of initial-condition
data u(x, r = () enabies prediction of the wave field u(x, ¢) at
any spacetime point without integration. As with linear Fourier
analysis, the ISPT enables arbitrary data to be classified in
terms of the dominant modes present and permits operations
such as filtering to suppress undesired modes (noise). It has
been shown [7] that the ISPT becomes ordinary Fourier analysis
in the linear (small-amplitude) limit.

Although many interesting results on the ISPT have been
obtained, it has not been widely used as a numerical method
for analyzing experimental data (Refs. [8, 9] are notable excep-
tions). This may be because the original work was expressed
in the language of algebraic geometry and Reimann-surface
theory, and the ISPT has been perceived as a mathematically
intricate method unsuitable for numerical work. The central
result of the present work is that the full ISPT (analysis and
inverse analysis or prediction} is computationally inexpensive
and readily applicable to certain common classes of problems.
Explicit numerical methods are described here for analyzing
and projecting arbitrary periodic data, and a few examples
are given.

Some aspects of the analysis described in this paper have
already been employed by other workers for different purposes.
In particular, there is a substantial literature applying the ISPT
to the sine-Gordon equation; one aim has been to investigate
the transition to chaos exhibited by the damped, driven version
of this equation [10-12]. It should be cautioned that the ISPT is
considerably more complicated for PDEs like the sine-Gordon
equation and the nonlinear Schrédinger equation, that are asso-
ciated with non-self-adjoint spectral problems [13]. Further-
more, some of these PDEs (sine-Gordon, and focussing nonlin-
ear Schridinger) posses integrable instabilities. While these
instabilities are an interesting subject in their own right [14],
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they render problematic the application of the numerical tools
presented here. Both of these topics (non-self-adjoint associated
problems and PDEs with instabilities) are beyond the scope of
the present paper.

Several groups have used the ISPT to generate families of
solutions to integrable equations [3, 6, 14—16]. This corresponds
roughly to the predictive part of the present algorithm. Unlike
the present work, the nonlinear modes were not related to
specific initial-condition data. Conversely, [SPT methods have
been used to find the soliton content of data from approximately
integrable physical [9] and numerical [ 12] systems, correspond-
ing to the analysis part of the present work. In contrast to these
works, the present analysis is carried further, computing not
only the spectrum present in the data but also the frequencies,
wavevectors, inifial phases, and f-matrix for the nonlinear
modes. This additional information permits rapid projection of
the initial conditions to arbitrary points in spacetime, with or
without filtering.

Another difference from earlier work concerns the qualitative
nature of the solutions considered. Previous authors concen-
trated on soliton and breather solutions, while the present work
is concerned primarily with solutions far from both soliton and
linear limits. Osborne and Bergamasco [7] termed the spectrum
asscciated with this sort of mode the intermediate spectrum.
The viewpoint advanced here is that the intermediate spectrum
will dominate the wave motion in many physical situations,
and the ISPT provides the only accurate description of the
nonlinear modes present in these cases.

It is hoped that the numerical methods detailed in this paper
will be useful for analyzing a wide variety of physical data.
The KdV and related integrable PDEs are valid approximations
to many physical systems. Whenever such systems are subject
to strong periodic forcing which is not particularly localized
within the period, nonlinear modes will arise which may be
quantitatively analyzed using the ISPT (but not the IST, nor
linear theory). The forcing may be spatial or temporal, as the
*“‘space’” variable x in integrable equations usually maps onto
physical space or time to the same order of approximation.

The plan of this paper is as follows. Section 2 introduces
notation for nonlinear Fourier series representations of solutions
to the KdV equation with periodic boundary conditions. In
Section 3 the ISPT formalism is reduced to formulas and algo-
rithms suitable for numerical implementation. Section 4 de-
scribes a particular implementation that has been successfully
used, and Section 5 details a sample application of this imple-
mentation to integration and nonlinear filtering for randomized
initial conditions. Section 6 briefly compares the computational
efficiency of the ISPT with that of direct numerical integration.

2. THE NONLINEAR FOURIER SERIES
The KdV equation with periodic boundary conditions is

u, * 6un, + 1, =0, ulx+ X, )= ulx,1). Y]
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Omitting the second term in (1) gives a linear, dispersive PDE.
A Fourier representation of a solution to the linearized equa-
tion is

N-1
wx, ) =ty + >, A, cos(ehg + kux — w,1),
n=0 - 2
k, =2m(n + DX, w,=-k. @
The quantities {tg, ¢, A,, n = 0... N — 1} are a linear Fourier
series, which may be evaluated using ordinary Fourier analysis
from initial data u(x, 0). Accurate approximations to well-
behaved initial data are obtained for large, finite N.
Following Dubrovin and Novikov [2], an N-gap solution to
(1) has an analogous form

wl(x, ) = uy + 2004 9x D In iy ... ihy-1),
qbn: ¢ng+k,,X*wnI, n=0.N—1,

(3)

The Riemann #-function depends on a real, symmetric, nega-
tive-definite matrix B,,, and is defined as an infinite sum over
N-vectors of integers [M; ... My_] as

Hicy ... ihy_1)
. @
= >  exp (— > MB.M, + > iq’),,M,,).
Mﬁ)" MN_]i—m 2 nm=0 n=0

The matrix B, plays a similar role in the nonlinear theory, as
does the vector A, of Fourier amplitudes in the linear theory.
It specifies the modes that are present and their relative
strengths, It can be computed numerically from arbitrary wave
data, as detailed below. The f-function is periodic in each of
the & phases

Bichy ... i[p, + 27 ... ichy—1)

= 0idy...i¢h, ... ipy-1),

n=0.N-—1.

The periodicity of (1) therefore forces the wavenumbers &, to
be integer multiples of 27/X. As discussed below k&, may be
chosen to be as in (2) without loss of generality. Conversely,
the frequencies w, depend upon the noulinear mode present.
Equations (3)—(4) generalize the linear Fourier series to the
nonlinear setting, as they include all harmonics and cross-har-
monics of the N frequencies and wavenumbers. The linear series
is recovered when the #-matrix is large and nearly diagonal,
B, = —C, 8,, with C, 2 |, This may easily be seen by inserting
B, of this form into (4) and then discarding terms in the
infinite sum that are relatively smaller by one or more factors
of exp(—C,). Then by linearizing the logarithm in (3), one
obtains the linear solution (2) with A, = —4k2 exp(—C,/2).
The set of quantities {uy, @w,, ¢, By, 1, m = 0 .. N — 1}
will be called a nonlinear Fourier series (NLFS). The ISPT
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formalism provides a means to compute the NLES from arbi-
trary initial conditions u(x, 0). The wave field at arbitrary (x,
f) may be evaluated from the NLFS without integration directly
from Egs. (3)-(4). Unlike the linear Fourier series, the compo-
nents of the NLFS (apart from the initial phases ¢,) may not
be chosen arbitrarily or independently of one another [2, 15].
This is a serious technical obstacle to using the ISPT to generate
families of solutions to (1) and is related to some problems in
the theory of #-functions and Riemann surfaces [17, 18]. For
present purposes this problem does not arise as NLFS calculated
from Cauchy data u(x, 0) automatically satisfy the necessary
consistency relations.

3. IMPLEMENTATION OF THE 1SPT

In this section the ISPT results of Dubrovin and Novikov
[2] are expressed in a form suitable for numerical calculations.
These results are summarized here only to the extent necessary
to introduce the notation used. Although derivations are not
repeated from Ref. [2}, it should be emphasized that all formutae
and quantities needed for numerical work are completely speci-
fied below.

The eigenvalues E of the Schridinger problem

—i —wx, = E (6)
are invariant as 4 evolves according to the KdV equation. In
the periodic case the eigenvalues fall in bands separated by
gaps, and the band structure determines the characteristics of
the nonlinear mode. An N-gap solution u(x, #) is one for which
there are N open gaps in the band structure. A general solution
to (1) has infinitely many open gaps, but they typically decrease
rapidly in width with increasing energy [2]. As for linear Fourier
series, approximations to arbitrary solutions are obtained by
truncating to finite V.

Label the groundstate energy of (6} £,, and the bottom and
top edges of the gaps By, Tg ... By—y, Ty—;. These points (the
““main spectrum’’) are independent of x and ¢. The ISPT uses
the analytic structure of the Riemann surface I' of the root

N=—1 2
RY(E) = [(E = E [[(E— BXE - Tn):| . (M
n=0

The topological genus of T is &, the number of gaps. Figure
1 depicts the Riemann surface I" for the cases N = 1, 2 along
with the cycles (integration contours) that are needed for ISPT
analysis. The choice of these cycles is discussed below. In
addition to the main spectrum one considers the ‘‘auxiliary
spectrum’” g ... ty— which does vary with x and #; ., lies in
the gap (B,, T,) and is defined as the eigenvalue E for which
an eigenfunction ¢(x) of (6} has a node at the point x. As x or
t varies, each u,, traces a cycle on I' from B, to T, along the
real axis on one sheet, then back to B, on the other sheet. The
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FIG. 1. Basis of cycles (¢ ... av-, By ... By-1) on the Riemann surface
I, for N = 1 (top) and N = 2 (bottom). The labels £Re, £Im specify the
sign of R'"(E) and whether it is real or imaginary, on the indicated segments
of the real axis on the top sheet. The sign convention is that RY*(E) is always
positive on the top sheet for E > T,_,. With this choice of ¢ycles and signs
the wavenumbers &, are given by Eq. (2) in the text.

wave u(x, £) is given in terms of the auxiliary spectrum by the
irace formula '

N—-1

W, )= —Ey+ 2, 20,05, — B, = T, (8)

Thus each gap (B,, T,) contributes amplitude Ay = 2(T, — B,)
to the nonlinear wave field. If the main spectrum consists of
gaps much wider than the bands that separate them (T, —
B, = 100{B, — T,_,1), the wave motion approximates a multi-
soliton solution for the nonperodic (IST) problem [9]. Con-
versely, narrow gaps separated by wide bands correspond to
linear waves. Many possible nonlinear modes are far from either
of these limits. These modes have bands and gaps of comparable
widths and require the ISPT for quantitative analysis.

The main and auxiliary spectra may be found by computing
the real unimodular 2 X 2 matrix T(x, t, E) which relates the
eigenfunction ¢ and its spatial derivative at the point x to these
quantities at the point x + X,

CJa b] [HG&+X)
T(x’t’E)_[c d]’ Lb(xﬂo}
b x
o ] I I
¢ d] Lx)

To calculate T(x, ¢, E) the Schridinger equation (6) is repre-
sented as coupled first-order differential equations
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i["b] _ [0 [E + ulx ,r)]] [@b} (10)
dx i | 0 Yr

Equation (10} is integrated from x* = xto x" = x + X, starting
with the two initial conditions [1, 0] and [0, 1], yielding the
columns [a, ¢] and [b, d} of T(x, ¢, E}. The main spectrum is
the set of points E for which the Floquet discriminant F(x, ¢,
E) = #a + d)is 1 or —1, and the auxiliary spectrum is the
set of points E within the gaps of the main spectrum for which
the off-diagonal element ¢ of T(x, ¢, £') vanishes [2]. An equiva-
lent formulation in terms of a 2 X 2 complex matrix has also
been used [2, 19], but the definitions used here appear simpler
for numerical work,

Osborne and Segre {19] have numerically integrated the non-
linear ordinary differential equations obeyed by the auxiliary
spectrum, which proves difficult for soliton-like w(x, #) because
each u, is expounentially close to B, or T, for much of the
wave motion. Here the numerical analysis is carried further to
compute the entire NLFS from arbitrary Cauchy data for general
N. This requires numerical evaluation of 3N? integrals on I’
and inversion of an N X N matrix. As discussed in Section 6
small N = 10 can provide useful, quantitative analysis for a
wide class of solutions extending from the soliton limit, through
the intermediate-spectrum range, to the linear-wave limit.

To carry out the ISPT analysis, a canonical basis «,, 8,
(n =0 ..N — 1) of cycles on I' must be chosen. Different
choices for the basis give different values for the wavenumbers
k,, with corresponding changes to the components of the NLFS
[15]. The wave field reconstructed via (3) is unchanged, so the
choice of basis is to some extent a matter of convenience. The
basis shown in Fig. 1 appears most useful for analyzing arbitrary
initia] conditions. With this basis, the wavenumbers form a
harmonic series k, = 2m(n + 1)/X. Also, using this basis each
phase ¢, is associated dominantly with the gap (B,. T,). The
wave field is represented as a nonlinear superposition of spatial
harmonics with calculable amplitudes 2(7, — B,) and velocities
¥, = w,/k,. The formulae given below are derived from the
basis of cycles shown in Fig. 1.

For numerical evaluation, the cycles «,, 8, may be deformed
to lie along the real axis. The following three sets of real
integrals will be required forn, m =0 .. N — I:

m_ (8 E"dE M_JT,, E"dE
" RAEY T e iREY
(11)
m_f.u,, EmdE
2, l'leZ(E)'

For I} with n = 0, the bottom limit of the integral is E,.
Referring to Fig. 1, it is specified that R"*(E) in these integrals
lies on the top sheet of I', above the branch cuts. This gives
the (real) denominators RY(E) or i{R"*(Ey in all of the integrands
the same sign as —1¥*", In terms of these integrals,

D. CANDELA

EdE oS

E"dE
é Rl.'Z(E) = (1 2)

5 2,
The ISPT makes use of normalized holomorphic differentials
onl,

N—1 m
Q.E) = 2 Cm;,z‘f n=0..N-1,
(E)’ 13)

SEC, QUE) = 27i 8.

Combining (12} and (13) the coefficients C,,, are computed as
the matrix inverse
[Conl = T [JH". (14

The wavevectors k, and frequencies w, of the N-gap mode are
then obtained as

kﬂ = 2CN*|,H

a (15)
w, = —8Cy_1, —4Cy_ ., [E + > (Bn Tm)].
m=i}

The first term in the equation for w, is absent when N = 1.
Equations (15) are derived, for example, in Ablowitz and Segur
[2]; note, however, that a sign error is corrected here. The B-
matrix is given by

N-1 'nﬁ
Bm=§ QR=22[CP">_, ] (16)
By =0
Finally, the initial phases are found to be
N—-1
o = —i Zojﬂ Q,= 2 C,nuK? an

In this equation {w,} is the auxiliary spectrum at (x, ) =
{0, 0) (i.e., the point where the phases ¢,, are to be computed),
and a,, = *1 depending upon the sheet of I', where u,, is
located. With the conventions established here, o, is determined
by the absolute value of the diagonal element a of T(x, ¢, p.(x,
1) as follows: @, = +1 when |a| < 1, r, = —1 when [a| >
L. The first equalities in (16) and (17) are fundamental resuits
of ISPT theory [2], which are not rederived here. The second
equalities follow as results of the definitions (11) above.

The one remaining component of the NLFS 1s the constant
iy, the determination of which is complicated in the absence
of initial-condition data [2, 15]. Using the periodicity of the 6-
function i, is found to be the average of the initial data, i, =
() ux, 0) dxy/X.

Equations (10)-(17) give an explicit prescription for the
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nonlinear analysis of an arbitrary initial wave field u(x, 0),
yielding the NLFS. For predictive and filtering applications,
practical representations are also needed for the reconstruction
formulas (3, 4). The logarithmic derivative in (3) is expanded
as 0 In @/ox? = (*@oxD18 — (06/9x)"/ 6. Then, the lattice
sum (4) is expressed in terms of real functions and differentiated
to yield

=1+ E'EMCOS(I)M,
M

90 _ — 2" Ey Ky sin @y, (18)
dx 7]
920 ,
Y = — ; Ey K% cos @y,
where
1 %
Eys=2 €Xp (5 2:0 ManmMm)a
' (19)

N-1

N=1
Ky= 2 Mk, ®y= EO M.,

=
The primed sums are restricted sums over N-vectors of integers
M = [M, ... My_,]: the zero-vector [0 ... 0] is omitted; and one
member of each pair (M, —M) is omitted. One way to do this
is to retain only those M for which the first non-zero component
is positive.

4. NUMERICAL METHODS

In Section 3, the complete ISPT for the KdV equation was
reduced to formulas suitable for numerical evaluation. This
section details an implementation of this program using stan-
dard numerical methods [20], which works well for a variety
of initial condition data.

Given initial data u(x, 0), x € (0, X), the first step is to find
the main spectrum Eg, By ... Ty-; and the auxiliary spectrum
Moy Oo o -1, On— from T(x = O, ¢+ = 0, E). Anticipating
experimental applications the examples shown here were calcu-
lated using discretized initial data, specified at £ evenly spaced
points x, = nX/P, n = (0 ... P — 1. The integrations of (10)
were carried out using the fourth-order Runge—Kutta formula
[20] with fixed step size. There is nothing about the ISPT that
is particular to discrete initial data, and in general the method
used to integrate (10) should be dictated by the form of the
data (e.g., analytic or adaptive-step integration for data speci-
fied analytically).

Figure 2 shows the behavior of F{E) = (a + d)/2. The
main spectrum is found by first finding pairs of E values that
bracket each of E;, By, Ty, By, ..., and then vsing Brent’s method
{20] to search for the zero within each pair of #(E} — 1 or
F(E) + 1. To search efficiently for the bracketing energies,
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F1G.2. Schematic dependence of the Floquet discriminant &(£) on energy.
E, is the smallest £ for which $(F) = +1, and is always greater than the
minimum value of the wave field .

information about the spectrum of (6) familiar from band-
structure theory is used: (a) Ey = uy, with the difference equal
to the zero-point energy of the groundstate; and (b) for large
n a ““free-electron’” approximation is valid, B, = T, = u, +
[(r + Da/X]% Here iy, is the minimum value of u(x, 0). The
auxiliary spectrum is found by a Brent’s-method search within
each gap (B,, T,) for the zero of ¢(E). This E is u, and a(u,)
is evaluated to find o,.

To proceed with the analysis N must be chosen. The relative
inaccuracy for any NV is given directly by (8) as the fraction of
the total gap width omitted. Numerical precision is found to
limit the maximum N that may be used in one of two ways.
For sufficiently large r, it becomes impossible to find E such
that |%(E)| > 1 (i.e., to find the nth gap), or within very narrow
gaps the numerical estimate of ¢(E) is not well behaved. As
narrow gaps contribute little to the wave field, these limits on
N do not impair the accuracy of the ISPT reconstruction.

The next step is to evaluate the 3N* integrals (11). The
integrals are all of the form

/- fb J(E)dE
© +VIE-a)c—E)

where f(E) is nonsingular in {a, ¢). The singularities at a and
¢ are removed by a substitution

a<b<ecg, (20)

_ [uor+ 3f(E)) du _atc c—a o

I f_l T W=t e ),

ubz—cos—?+\/§sin?, ¢ = cos™! (%), (21
0< <

Simple Simpson’s-rule [20] evaluations of the integrals in this
form suffice for a wide variety of initial conditions. When the
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edges of adjacent gaps are close to the limits of integration the
integrand is sharply peaked, and an adaptive-step integration
[20] would be more efficient. This occurs in the extreme soliton
limit, although it is found that accurate analysis for solitons
that are not too widely separated may be done using only
Simpson’s rule.

The final step in the analysis of the initial data is the N X
N matrix inversion {14). Then the NLFS components k,, w,,
¢, are directly given by (15)—(17). For sufficiently large N, it
is found that k, = 27 (n + 1)/X to good accuracy. For smaller &,
the wavenumbers do not meet this condition. The reconstructed
wave u(x, f) field with such small N remains a solution to the
KdV equation, but it is no longer accurately periodic in x.

The reconstruction of the N-gap wave field u(x, r) from the
NLFS is discussed next. A criterion is needed to truncate the
infinite lattice sums (18). As cancellation occurs both within
these three sums and when they are combined to form u(x, #),
it is unclear which are the most important terms. Several criteria
were tried, but it seems likely that improvement may be
achieved with further work. The most successful criterion on
M found is

exp (% > B,,,,,Mﬁ) > g exp(Byp/2), (22)

where £ <€ | is an accuracy parameter. While this criterion
ignores the off-diagonal elements of B,,, it may be expressed
in the form %,C,M3 < 1, and it s easy to rapidly generate all
M meeting such a condition, Another useful criterion is

2
(1 + [2 Mn + 1)] ) exp GE M,,B,,,,,M,,,)

> g exp(Bw/2).

(23}

It requires more computation to find the set of M vectors that
satisfy (23), but a smaller set of vectors chosen this way gives
u(x, ¢ to the same accuracy as a larger set chosen according
to (22). Choosing smaller £ in (22) or (23) causes more M
vectors to be used in the sums, with correspondingly greater
accuracy and slower execution.

5. A SAMPLE APPLICATION

As an illustration and first application of the method, it was
applied to the KdV equation with randomized initial conditions.
The goal was to find nonlinear structures that might occur in
an experimental or natural situation in which the wave field is
driven by a random or noisy process. Of course, many types
of random initial conditions are possible, and even a qualitative
exploration of all of the possible resulting nonlinear modes is
beyond the scope of the present work. The initial conditions
chosen were a random superposition of harmonics with a power-
law frequency dependence,

D. CANDELA
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u(x, 0) = Uy D, n~*u, cos(2mnx/X + by} (24)
n=]

with the amplitudes u, chosen randomly in (0, 1) and the phases
b, chosen randomly in (0, 27). The examples shown here have
X =40, 0, =02, o = 1, and ng,, = 7. The significant
parameters are UpX®, which is an invariant measure of the
nonlinearity, and &, which qualitatively affects the modes gen-
erated. Increasing n,,,, adds high-frequency noise to visualiza-
tions but has little effect on the quantitative analysis. UpX* ~
300 was chosen so as to have strong nonlinearity as well as a
significant influence of the periodicity on the modes (this influ-
ence vanishes as the period X — «). This is therefore a different
regime than that explored for natural water waves in Ref. [9].
In that work, the period used for the ISPT analysis was not a
feature of the physical system, but rather it was a data window
similar to that commonly used for linear spectral estimation.

To tsolate the effect of nonlinearity, the time evolution gener-
ated by the KdV eguation was compared with that generated
by (1) with the nonlinear term omitted (equivalently, infinites-
imal u(x, £) with the full KdV). Figures 3a and b show linear
and nonlinear evolutions from a particular set of initial condi-
tions from the ensemble (24). The diffarences are striking:
the linear evolution shows no structure beyond the imposed
pertodicity in x, while the nonlinear evolution dispiays a double
set of quasiperiodic puisations with a s-period of about 25.

The tendency of integrable nonlinear PDEs to generate orga-
nized structures (even when the soliton description is inaccu-
rate) is well known, and Fig. 3b could have been produced by
direct integration of the KdV equation rather than the ISPT.
The advantage of the present method is the possibility of under-
standing and quantifying the nonlinear mode that gives rise to
the visible structure and, if desired, to isolate it from other
modes present. The main spectrum for these initial conditions,
Fig. 4a, shows that the motion is dominated by the three gaps
(81, 1), (B;, T3), and (B,, T;). By associating the gaps with
their harmonics and velocities it is possible to plot the locus
of points in (x, ), where each phase equals its value at (0, 0),
Fig. 4b. This plot immediately explains the pulsations as an
interference effect between the two largest gaps, (B, 1)) and
(B;, T;). The dominant gap structure Ej ... T is neither solitonic
nor nearly linear. Referring to Fig. 4b, the t-period of the
pulsations is precisely computed as Ty, = X/d(v, — v) =
23.36. It is also clear that the unlike appearance of the two
pulses in an x-period is due to modulation by the only other
large gap, (By, Ty). Therefore one predicts a slow alternation
between the shapes of the two pulses per x-period, with the
very long period T, = X/2(v, — v} = 158.6. It should be
emphasized that these characteristics which are evident in visu-
alizations such as Fig. 4b are quantitatively explained by the
ISPT.

As the bands separating the first two gaps are very narrow,
Fig. 4, it is possible to qualitatively describe the two ridges of
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(a) § 0.5
i u
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FIG. 3.
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(a) Linear evolution of the wave field u(x, f) from randomly chosen initial conditions u(x, 0). The initial conditions are shown by the dotted curve

at 1 = 0. The spatial period is 40 and one complete period is shown. (b) Nonlinear evolution computed using the 1SPT ajgorithm for the KAV equation, for
the same initial conditions as (a). Note the pulsation of the nonlinear evolution with a r-period of approximately 25,

pulsations in Fig. 3b as a pair of solitons [16]. However, the
IST prediction for these solitons in isolation is T, = 243.7
(the time between successive collisions of the solitons). The
presence of the large gap (B, T:) has drastically medified
the properties of the selitons, making the ISPT necessary for
quantitative analysis.

Another possibility is to use the ISPT for nonlinear filtering
{91. As for linear filtering, in which undesired Fourier compo-

20

40

FIG. 4. (a) The main spectrum (band edge energies) computed for the
tnitial conditions of Fig. 1. The first six gaps are shown. The first two bands
(Eq. By) and (T, B)) are too narrow to see on this figure. (b) Space-time diagram
showing the locus of points where each phase ¢, equals its value at (x, 1) =
(0, 0). These lines are labeled with z and the size of the corresponding gap is
roughly indicated by the line width, Points of intersection between n = 3 and
n = 1, marked with dots, correspend to the pulsations visible in Fig. 1b.

nents are omitted, N is reduced to omit gaps superfluous to the
main nonlinear mode present. The wave field u(x, ) recon-
structed using (3) is then a filtered version of the original wave
field. Figure 5 shows the result of nonlinear filtering for the
same initial conditions as Fig. 3. The dominant pulsations are
now more clearly visualized, but their characteristics (periods,
velacities, and amplitudes) are almost unchanged. Excessive
reduction of N (below N = 4 for this example) wrecks the
periodicity of the solution (&, # 27(n + 1}/X). Even in this
case, it might be useful to reconstruct u(x, r) using (3) for small
N, while using the large-N values for k,, w,. This would permit

(%
2 0.5

A\

0 X 40
nonlinear, N=4

FIG. 5. Result of nonlinear filtering applied to the initial conditions of
Fig. 1. The number N of gaps used in the analysis has been reduced to the
minimum number necessary te describe the dominant nonlinear mode, four in
this case.
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FIG. 6. Linear and nonlinear evolutions from initial conditions drawn from the same random ensemble as for Fig. 3. The randcm-number seed was 5 =

2 for (a) and (b), and 5 = 3 for (c) and (d) (for Fig. 3, s = 1).

the visualization of the part of the wave motion due to the first
few gaps.

The ISPT analysis was repeated for several sets of initial
conditions drawn from the same random ensemble as for
Fig. 3. It is interesting to note which features of the nonlinear
evolution are specific to particular realizations of (24), and
which are universal. Certainly the pattern of double pulsations,
which results from the specific gap structure of Fig. 4a, is
not reproduced. However, the majority of initial conditions
tried show an organized pulsation, wave or ridge structure,
which is never observed in linear evolutions like Fig. 3a.
Figure 6 shows linear and nonlinear evolutions as in Fig.
3, for two further sets of initial conditions from the same
ensemble. For the first set, Figs. 6a,b, there is little qualitative
difference between the linear and nonlinear evolutions. The
second set, Figs. 6¢,d is more like Fig. 3 in that the nonlinear
evolution shows a highly organized structure {a modulated

ridge) absent in the linear evolution. As for Fig. 3 this ridge
could be interpreted as a soliton, but its properties are greatly
altered by the other nonlinear excitations present. The initial
conditions for Figs. 3ab, 6ab, and 6c.d were generated by
choosing successive values for the random-number seed with-
out further selection.

The three examples shown do not exhaust the possibilities,
even for the chosen nonlinearity parameter U, X* and exponent
a, but they give a good idea of the range of structures encoun-
tered. Cataloging nonlinear structures is one possible avenne
for future investigation. Another is to search for coherent struc-
tures in periodically forced experimental systems, and o inves-
tigate the degree to which the ISPT can explain them. The N-
gap modes found here are extraordinarily robust against pertur-
bations (compare Figs. 3b and 5). It remains to be seen whether
these modes are also robust in the real world. There is already
experimental evidence that a 2-gap solution to another inte-
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grable equation, the Kadomtsev—Petviashvili equation, persists
in water waves well beyond its expected domain of validity [8,
18). This suggests it is worthwhile to search in physical systems
for N-gap modes, using the ISPT as a guide.

6. DOMAIN OF VALIDITY, COMPUTATIONAL
EFFICIENCY, AND EXPENSE

This concluding section addresses several issues that deter-
mine the feasibility of applying the ISPT in the form described
here. One important conclusion from many numerical trials is
that the method is useful over a wide range of nonlinearity,
from nearly linear to nearly solitonic. It is found that linear
evolutions such as Fig. 3a are readily duplicated by using ex-
tremely small amplitudes. In this linear regime, the limitation
on the method at present is the crudeness of the criteria use to
truncate the lattice sums (18). For very large N, which is desir-
able to model a solution with many Fourier harmonics, the
criterion (22) is too unselective and the criterion (23) requires
too much computation to implement.

In the other limit, of well separated solitons, neither N nor
the number of terms in the lattice sums is excessive (N need
only be as large as the number of solitons). A different limitation
is encountered when the solitons are very widely separated. In
this case the eigenfunctions of the Schridinger equation (6)
vary exponentially over much of the x-domain, and numerical
integration of (10} fails. However, it is found that the method
is accurate for solitons sufficiently separated to give the IST
(infinite domain)} velocities and collisional phase shifts to
high precision.

1t is interesting to compare the amount of computation re-
quired for the ISPT with that required for straightforward inte-
gration of the nonlinear PDF. The structures of the two calcula-
tions are dissimilar: the ISPT requires a large computation to
analyze the initial conditions, and then can rapidly predict the
solution at any (x, 1), while the integration requires computation
proportional to the ¢ domain to be explored. Also, the ISPT
produces exact solutions to the KAV equation that only approxi-
mately meet the specified initial and boundary conditions, while
the integration produces a function that exactly meets the initial
and boundary conditions but only approximately obeys the
KdV equation.

The comparison was carried out for two different initial
conditions on the interval (0, X) with X = 40: (a) the random
initial conditions of Fig. 3, and (b) two solitons with heights
0.25 and 0.5, which interact. The results are listed in Table 1.
For both the direct integration and the ISPT, the parameters of
the calculation were varied so as to minimize the computer
time while keeping the maximum error jAuj < 0.01. These
parameters are the space and time step sizes &x, & for direct
integration, and P, N, and & for the ISPT (the criterion (22)
was used). For direct integration, the simple explicit method
of Zabusky and Kruskal [21] was used. As investigated in detail
by Taha and Ablowitz [22], this is not generally the fastest
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TABLE I

Comparison of Computer Time Required for Direct Integration of
the KdV Equation with That Required for the ISPT Analysis with the
Same Initial Conditions

Initial Computer
conditions Method time
Random {Fig. 3) Direct integration from § = O to ¢ = 100, 53.0 s
& = 0.2, & = 0.003
ISPTwith N = 8, £ = 10°°
Finding main and auxiliary spectra 3is
(P =100
Finding NLFS and series coefficients, 25s
Evaluating u(x, ) at 100 points 27s
Colliding solitons  Direct integration from r = 0 to ¢ = 100, 33s
& = 04, & = 0024
ISPTwith N=2,¢ = 107°
Finding main and auxiliary spectra 1.4 s
(P = 100)
Finding NLFS and series coefficients, 1.7 s
Evaluating u(x, £) at 100 points 0.09 s

All calculations were carried out on a system with a 33 MHz Intel 80486DX
micropracessor, and all real-number caleulations used double (15 decimal digit)
precision. See text for details,

way to integrate the KdV equation. The most effective method
found by these authors required roughly 10 times as much
computation per mesh point, but it was stable and accurate
using a larger time step &t (the tabulated results of Ref. [22]
suggest a maximum accurate &t =~ &x for these conditions). It
is estimated that the advantage of using this more sophisticated
integration method is a only factor of two to seven for the
conditions of Table I. The reason the simple explicit method
is so successful is the relatively small amplitude of the wave
field in these examples. This does not imply that the effects of
nonlinearity are small (Fig. 3).

Table I shows that the ISPT analysis is sometimes competi-
tive with direct integration of the PDE as a method of projecting
arbitrary data ahead in time, depending mainly on the number
of (x, £) points at which predictions are required. Development
of the ISPT as a numerical method is at an early stage, with
further optimization likely. A major reason for using the ISPT
will remain its ability to provide classification and understand-
ing for the organized structures generated by integrable PDEs.
From this point of view the significant result from Table [ is
that an inexpensive computer requires only a few seconds to
complete the ISPT analysis for data sets similar to those gener-
ated by experiments.

Note added in proof. Since this work was completed, an
experimental study of shallow water waves has been reported
that makes use of the ISPT for data analysis {23]. The numerical
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methods used in [23] involve the integration of the ordinary
differential equations obeyed by the auxiliary spectrum {g,}.
rather than the #-function approach developed here.
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